Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antiviral Res ; 212: 105580, 2023 04.
Article in English | MEDLINE | ID: covidwho-2249370

ABSTRACT

Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Brain , Antiviral Agents , Disease Models, Animal
2.
Antiviral Res ; 195: 105185, 2021 11.
Article in English | MEDLINE | ID: covidwho-1458855

ABSTRACT

Monoclonal antibodies (mAbs) are emerging as safe and effective therapeutics against SARS-CoV-2. However, variant strains of SARS-CoV-2 have evolved, with early studies showing that some mAbs may not sustain their efficacy in the face of escape mutants. Also, from the onset of the COVID-19 pandemic, concern has been raised about the potential for Fcγ receptor-mediated antibody-dependent enhancement (ADE) of infection. In this study, plaque reduction neutralization assays demonstrated that mAb 1741-LALA neutralizes SARS-CoV-2 strains B.1.351, D614 and D614G. MAbs S1D2-hIgG1 and S1D2-LALA mutant (STI-1499-LALA) did not neutralize B.1.351, but did neutralize SARS-CoV-2 strains D614 and D614G. LALA mutations did not result in substantial differences in neutralizing abilities between clones S1D2-hIgG1 vs STI-1499-LALA. S1D2-hIgG1, STI-1499-LALA, and convalescent plasma showed minimal ability to induce ADE in human blood monocyte-derived macrophages. Further, no differences in pharmacokinetic clearance of S1D2-hIgG1 vs STI-1499-LALA were observed in mice expressing human FcRn. These findings confirm that SARS-CoV-2 has already escaped some mAbs, and identify a mAb candidate that may neutralize multiple SARS-CoV-2 variants. They also suggest that risk of ADE in macrophages may be low with SARS-CoV-2 D614, and LALA Fc change impacts neither viral neutralization nor Ab clearance.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody-Dependent Enhancement , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chlorocebus aethiops , Humans , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutralization Tests , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL